ACTUARIAL
SOCIETY

OF SOUTH AFRICA

Quantifying Risk, Enabling Opportunity.

Exploring neural network predictions for
insurance problems

Ronald Richman (FIA, FASSA, CERA) —
Associate Director - L

QED Actuaries & Consultants A e
28/08/2020



Agenda

Infroduction

- Aggregating Predictors
* Networks and Aggregating
* Example: French Motor Third-Party Liability Insurance

e Conclusion

ACTUARIAL  Nagging Predictors S _ ,
@ SOCIETY  author: Ronald Richman (FIA, FASSA, CERA), Associate Director, R&D & Special Projects at Quantifying Risk, Enabling Opportunity.

OF SOUTH AFRICA

QED Actuaries & Consultants



Rationale

- Deep learning currently producing highly accurate models on diverse types of
data:

- Within actuarial science — pricing, reserving, mortality forecasting, analysis of
telematics data

- In more general domains — computer vision, natural language processing,
generative modelling, timeseries forecasting

- On the other hand, training process leads to variable results:
- Aggregate level — performance varies depending on training run

- Policy level — greater variability than aggregate level
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Fully Connected Neural Networks

* Intfermediate layers = representation
learning, guided by supervised objective

Feature
extractor

« Last layer = (generalized) linear model,
where input variables = new
representation of data

 No need to use GLM - strip off last layer
and use learned features in, for example,
XGBoost

« Or mix with tradifional method of fitting
GLM

Input Layer € R'® Hidden Layer € R® Hidden Layer € RB? Output Layer € R'

ACTUARIAL  Nagging Predictors ifving Ri i i
@ SOCIETY  author: Ronald Richman (FIA, FASSA, CERA), Associate Director, R&D & Special Projects at Quantifying Risk, Enabling Opportunity.
QED Actuaries & Consultants



Recent Examples

out-of-sample: boxplot over 400 calibrations
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Neural networks fit to French MTPL dataset Neural networks fif fo HMD dafaset

Perla, Richman, Scognamiglio and Wuthrich

Richman and WUthrich (2020) (2020)
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Nagging Predictors

Richman, Ronald; Wuthrich, Mario V. 2020. "Nagging Predictors.” Risks 8,

no. 3: 83.

Aggregating is a statistical technique that helps to reduce noise and uncertainty
in predictors and is justified theoretically using the law of large numbers.

An i.i.d. sequence of predictors is not always available thus, Breiman (1996)
combined bootstrapping and aggregating, called bagging.

This paper aims to combine networks and aggregating to receive the nagging
predictor.

Explore the statistical properties of the nagging predictors at a portfolio and at a

policy level.
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Consequences of using Neural Networks

* Neural network training
produces infinitely many
equally good predictors

\Vil®| g ra d e n‘l‘ d esce n‘l‘ \?vii];fgw?r?lTiﬁéi?r Léﬂr:‘gtger;'eurol network models
a |gOI’ITh mSs. epredictive performance of the models
measured at portfolio level will vary with
«  Common neural network each run and the predictions for , :
. . individual policies will vary even more Can use multiple network predictors for
Tr0|n|ng TeChrﬂques mOy *uncertainty about the prices that should w. :
[timately be charged to individuals. esame situation as Breiman (1996) after
even lead to more having received the bootstrap samples
. eaggregated predictions lead to more
ran d omness INn neu rC” stable results and enhanced predictive
performance.
network results, for
example:

« Stochastic Gradient
Descent; and
» Dropout.
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Notation and Definitions

* In context of non-life pricing for a policy i, define a regression model u(.) for claims
Y;, based on covariates X; and exposures v;:

X >R, x e ulx) =E[Y]
* Here, we approximate u with a neural network:

v = g (E[Y]) = (B, (29 00 020) ()

«  We fit the network by minimizing the deviance loss under a suitable distributional

assumption:
6(Y;, pi)
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Proposition 1

Proposition 1. Choose response Y; ~ f(-;8;,v;/ ¢, p) with power variance parameter p € [1,2] and canonical
parameter 0; € ©,. Assume ji; is an unbiased estimator for the mean parameter p; = x,(0;), being independent
of Y;, and additionally satisfying € < ji; < p/(p — 1), a.s., for some e € (0,p/(p — 1) ;). We have expected
generalization loss

E[5(Y:, pi)] = E[6(Y mi)].

Proposition 1: model iI; has an expected generalization loss which is bounded
below by the one of the frue model mean y; of Yi.

Aggregating = come as close as possible to this lower bound by combining
predictors from multiple models.

Assumed that f; is unbiased.
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Proposition 2

Assume that ﬁf”) are i.i.d. copies of unbiased predictor 7i;. We define the aggregated predictor

Sy 1

L (10)

L=

Proposition 2. Assume that ﬁm , | = 1, are i.i.d. copies of Ji; satisfying the assumptions of Proposition 1, and

1

being all independent from Y;. We have for all M > 1

B [5 (550)] > B[s (5] > E[s (5a%)] > 0.

Proposition 2: Aggregation works, i.e., aggregating i.i.d.

predictors Equation (10) leads to a monotonically decreasing
expected generalization loss.
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Proposition 3-4

Proposition 3. Assume that ﬁg’f) , ] =1, arei.id. copies of ji; satisfying the assumptions of Proposition 1,
and being all independent from Y;. In the Poisson case p = 1 we additionally assume that the sequence of

agqregated predictors Equation (8) has a uniform integrable upper bound. We have

lim E [5 (Y,-,ﬂi(M))] —E l lim 5(11-,;:;5“‘”)] —E[5(Y;, 1)) .

M—reo M—e0

(M)

M1/2 ggr(ﬁ_)f;; — N(0,1), as M — o
1

Propositions 3-4. Convergence results
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Network Modelling & Bagging

- Propositions 1-4 based on assumption that we can generate a suitable i.i.d.
sequence of unbiased predictors.

- In practical application this is not the case because data generating mechanism
is unknown => rely empirical approximations to the tfrue model.

- Strategy: use neural network regression models that are expected to generalize
well to unseen data:

- split data into fraining/validation/testing sets;

- fit on fraining set and assess on validation set; and
- final model accuracy assessed on test set

- Bagging: generate predictors ﬁl@ by booftstrapping training data (Breiman 1996)
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The Nagging Predictor

- Neural networks initialized randomly, and parameters calibrated with gradient
descent

- To prevent overfitting, training stopped early once network overfits to validation
set

- Different parameter set received each time training is run

- Nagging: exploit random outcomes of neural network training to receive a
sequence of predictors ﬁl.(”;

M M .
M 1 &) 1 + 50)
= ) iy = o= ) w(x, B)
f M}; : M}; :
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Bagging vs Nagging

*Performs re-sampling on observations => tries to create new observations from the data follow a similar law as
this original data

-R?)—sompling involves randomness and, therefore, bootstrapping is able to generate multiple random predictors
~(J

Hi

*Bootstrap predictors are i.i.d. by applying the same algorithm using i.i.d. seeds

Nagging
*Not based on re-sampling data, but works on the same data set

*Multiple predictors are obtained by exploring multiple parametrizations of the same model using gradient
descent methods combined with early stopping

+=> |ess randomness compared to bootstrapping because underlying data set always the same

Dependence on data

+ Bagging and Nagging fully based on the observed data.

« Only extract information that is already contained in the data.

+ If for some reason data atypical, reflected in bagging and nagging predictors and may exhibit poor out of
sample performance.
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French Motor Third-Party Liability Insurance

Data

Explore nagging predictors on real data.
French motor third-party liability (MTPL)
claim counts data set of Dutang and
Charpentier (2019).

Well studied: Noll et al. (2018) and
WUthrich (2019).

R package CASdatasets, see Dutang and
Charpentier (2019).

Listing 1. French MTPL claims frequency data freMTPL2freq; version CASdatasets_1.0-8.

‘data.fram
§ IDpol

$ ClaimNb
$ Exposur
$ Area

$ VehPowe
$ VehAge
$ DrivAge
$
$
$
$
3

WD GO NI TN U1 e LD R

BonusMa
VehBran
VehGas
Density
Region

e
[Py

-
e

> str(freMTPL2freq)

e’ 678013 obs. of 12 variables:

:num 1 3 5 10 11 13 15 17 18 21 ...
:int 1111111111 ...
e : num 0.1 0.77 0.75 0.09 0.84 0.52 0.45 0.27 0.71 0.15 ...
: Factor w/ 6 levels "A","B","C","D",..: 4 4 2 2 255332 ...
r :int 5567766777 ...
:int 0020022000 ...
: int 55 55 52 46 46 38 38 33 33 41 ...
lus: int 50 50 50 50 50 50 50 68 68 50 ...
d : Factor w/ 11 levels "B1","B10","B11",..: 4 4 4 4 4 4 4 4 4 4 ...
: Factor w/ 2 levels "Diesel”,"Regular": 2 2 1 11 2 2 1 1 1
: int 1217 1217 54 76 76 3003 3003 137 137 60 ...
: Factor w/ 22 levels "R11","R21","R22",..: 18 18 32 15 15 8 8 20 20 12 ...
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Learning and Test Data

» Features are pre-processed :

+ use MinMaxScaler for continuous explanatory variables; and
+ two-dimensional embedding layers for categorical covariates

+ 90% of all policies allocated to training data D

* Remaining 10% are allocated to testing data T

Numbers of Observed Claims Empirical Size of

0 1 2 3 4 Frequency  Data Sets
empirical probability on D 94.99%  474% 036% 0.01% 0.002% 10.02% n = 610,212
empirical probability on 7 94.83%  4.85% 031% 0.01%  0.003% 1041%  m = 67,801
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Neural Network Architecture

We have 7 continuous features
components and two categorical ones
having 11 and 22 labels, respectively. Using
We choose a network of depth d =3 embedding dimensions 2 for the two
having (q1. q2. q3) = (20, 15, 10) hidden categorical variables provides us with a
neurons in the three hidden layers. network architecture having a network
parameter of dimensionr = 792; this
includes the 66 embedding weights of the
two categorical feature components.

As activation function we choose the We choose the Poisson deviance loss
hyperbolic tangent. We implement this in R function as objective function, and we use
using the Keras library. the nadam version of gradient descent.
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Fitting the network

Figure: one run of nadam gradient descent algorithm over 1000
epochs on random mini-batches of size 5000

Retrieve the network parameter that has the smallest loss on V —
stopping rule in place

To prevent overfitting, training stopped early once network overfits
to validation set

Early stopping => that this network has a bias w.r.t. the learning data
D.

Applied bias regularization step proposed in Withrich (2019)

In-Sample Out-of-Sample
Loss on D Loss on T
(a) homogeneous model 32.935 33.861
(b) generalized linear model 31.267 32.171
(c) boosting regression model 30.132 31.468
(d) network regression model (seed j = 1) 30.184 31.464

deviance loss

0200 0202 0204 0206 0208 0210
1

0.198

stochastic gradient descent algorithm

» validation loss

‘ — training loss

o 200 400 600 EDD 1000

training epochs
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Variability of resulis

- Randomly split the learning data info training/validation
- Randomly split into mini-batches of size 5000
- Randomly choose the starting point of the gradient descent algorithm

out-of-sample: boxplot over 400 calibrations

in—sample: boxplot over 400 calibrations

n7

—— 400 calibrations

316

out-of-sample losses
35
L L

in—sample losses

314

In-Sample Out-of-Sample
Loss on D Losson T

(a) homogeneous model 32.935 33.861

(b) generalized linear model 31.267 32.171

(c) boosting regression model 30.132 31.468

(d) network regression model (seed j = 1) 30.184 31.464

(e) average over 400 network calibrations 30.230 (0.089) 31.480 (0.061)
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Can we predict out of sample performance?

« Scatter plot shows in-sample and out-of-sample losses over the 400 different runs of the gradient descent fitting
(plus a natural cubic spline):

+ Smallin-sample losses imply overfitting
* Large in-sample losses imply calibrated model not optimal
* Large variation even at most optimal in-sample loss

scatter plot of in-sample and out-of-sample losses

315 318 31.7

out-of-sample losses

31.4

o b 8 o
© © 400 calibrations
o cubic spline
T T T T T
301 302 303 304 305

in-sample losses
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The Nagging Predictor

nagging predictors for M>=1

Calculate the nagging predictors ﬁEM) over the test dataset T. .
Figure shows for M = 1 the sequence of out-of-sample losses: anders sevation

3155

31.50

31.45

Nagging leads to substantial improvement in out-of-
sample losses => nagging helps to improve the predictive
model substantially.

out-of-sample losses
31.35 31.40
1

31.30

Convergence takes place over first 20 aggregating steps : e

. o 20 40 a0 B0 100

in our example. index M

Doftted orange lines in give corresponding 1 standard

deviation confidence bounds. In-Sample Out-of-Sample
(a) homoge:neou.s model 32.935 33.861

Sufficiently small confidence bounds after averaging over Yl ety 0 e v

] ] (d) network regression model (seed j = 1) 30.184 31.464

rou g hly 40 n efWOI’k ca | [ brOTlonS . (e) average ovegr 400 network calibra]tions 30.230 (0.089) 31.480 (0.061)

(f) nagging predictor for M = 400 30.060 31.272
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Pricing of Individual Insurance Policies

histogram of coefficients of variations

* Must ensure robustness of prices on an
individual insurance policy level.

10000
]
|

* Expect need to average over more networks
than portfolio level because the former —

000

&

statement includes an average over all g z u
policies g
. T8
+ We calculate foreach policy t=1, ..., Iv\ of

=i
/\
\_/
2000

the test data T, the nagging predictor ji;
based on over M = 400 different ne’rworks and

we calculate the empirical coefficients of °- . . . .
variation in the individual network predictors o 02 03 o4
given by: coefficient of variations
2 Most policies (73%) have a CoV of less than 0.2.
N (}f ) 11 of the m = 67, 801policies have a CoV bigger than 1.
CAV o t t For CoV ~- 1, and averaging over 400 different network
(M - (M) calibrations we still have an uncertainty of 1/v400 ~= 5% fo o
oVt = (M) — ( librati till h tainty of 1/« 5% to 10%
It Hy Need to aggregate over a considerable number of networks to

receive stable network regression prices
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Focus on Observations with CoV > 1

We list the 11 policies in the table below:

Listing 2. Policies with high coefficients of variation CoV;. All these policies have vehicle age
1 Area VehPower VehAge DrivAge BonusMalus VehBrand VehGas Density Region VehAge = O
2 A 5] 0 51 50 B3 Diesel 2.71 R21
3 A 5] 0 51 50 B3 Diesel 2.71 R21
4 B 9 0 30 125 B3 Regular 4.32 R26
5 E 15 0 75 67 Bl14 Regular 8.38 R72
A B 5] 0 29 60 B3 Diesel 4.30 R21
7 A 10 0 29 60 B13 Regular 2.08 R24
8 E 9 0 31 125 B4 Diesel 8.35 Ri1
9 A T 0 69 50 Bi14 Diesel 3.83 R82
10 A 10 0 59 50 Bl Diesel 3.33 R21
11 A 10 0 59 50 Bl Diesel 3.33 R21
12 A 10 0 59 50 Bl Diesel 3.33 R21

We will proceed to analyse policies with vehAge = 0 and vehAge > 0

separately.
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Uncertainty in VehAge =0

VehAge =0 :

VehAge >0 :

frequency

histogram of coefficients of variations (only VehAge=0)
8 _

g |

g,

T T T T T T 1
0.10 0.15 0.20 0.25 0.30 035 0.40

coefficient of variations

frequency

4000 6000 8000 10000
1

2000

histogram of coefficients of variations (VehAge>0)

T T T 1
0 02 03 04

coefficient of variations

Confirm that mainly policies with vehAge = 0 are difficult to price. These could be rental cars (or some other special
cases). Unfortunately, no further information is available for this data set that allows such analysis.

CoV of the nagging predictoris a useful data-driven tool for segmenting data and understanding network

predictions
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Meta Network Regression Model

Nagging predictor substantially improves the predictive model

Difficulty is that it involves aggregating over M = 400 predictors for
each policy i

Propose to build a meta model that fits a new network to the nagging
predictors ﬁl.(M), i=1,..., M — *model distillation”

Comparably simple to fit network to smooth surface described by
nagging predictors ﬁi(M), i=1,..., M, and over-fitting will not be an

issue
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Building the Meta Model

Replace the original claim count responses Y; by the
function — can choose an unweighted function or can weight the individual observations with 1/6;.

=(M
i

Use the same network architecture to build the meta model - change the loss function and the response variables.

, and for the loss function we choose the square loss

We conclude that the weighted
version has better convergence

properties in gradient descent
fitting

deviance loss

0.0005 0.0010 0.0018 0.0020

0.0000

stochastic gradient descent algorithm

—  training loss
o validation loss

200 400 500 800 1000
training epochs

deviance loss

Unweighted square loss function Weighted square loss function

stochastic gradient descent algorithm

— training loss
& validation loss

training epochs

ACTUARIAL
@ SOCIETY

OF SOUTH AFRICA

Nagging Predictors

QED Actuaries & Consultants

Author: Ronald Richman (FIA, FASSA, CERA), Associate Director, R&D & Special Projects at

Quantifying Risk, Enabling Opportunity.




Nagging Predictor vs Meta Model Predictor

The scatterplot below presents the two predictors:

scatter plot: nagging vs. meta model The models are reasonably equal with the
biggest differences highlighted in blue.
= . These refer to the policies with vehicle age 0 -
- 5 the feature component within the data that is
% . 3 the most difficult fo fit with the network model.
; o =]
S .
% o - : o
£ =,
?
E 7 y
T T I I I
-4 -3 2 -1 0
nagging predictor (log scale)
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Optimal Model

The resulting in-sample and out-of-sample losses are in the table below: * The weighted version (g2) has a
better loss performance than the

In-Sample Out-of-Sample Unweighfed version.
Loss on D Loss on T

(d) network regression model (seed j = 1) 30.184 31.464 . e old

(e) average over 400 network calibrations 30.230 (0.089) 31.480 (0.061) Itis S“ghﬂy WOI:SG fhan the

(f) nagging predictor for M = 400 30.060 31.272 nagging predictor model,

(g1) meta network model (un-weighted) 30.260 31.342 however subs’ronﬂolly better than

(g2) meta network model (weighted) 30.257 31.332 the individual network models

and easier in handling than the
nagging predictor.

FC scores for vehicle age FC scores for driver age

» Plotted PCA analysis of the
learned representation in last
layer of model, averaged for
each covariate value.

scaled PC smre
-0 0@ 000 006 0% 01 0D 0F
|
A
/

scaled PC smre

A0 9% 00 0 09 0 0D 0%

scaled PC smre
-0 0@ 000 006 0% 01 0D 0F

P
venicle age

observed frequency per wehicle age groups

4

L « First PC follows empiricall

AN S frequencies, other PCs reflect
S - - refinements and interaction
e effects.

frequency
frequency
0

o e 0n 0 0N 0F oW

frequency

S i T
R mee
Ee

U .

=

wehicle age groups drivers age groups bonus—malus level groups
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Conclusions on Nagging Predictors

Produces accurate and stable portfolio predictions on the basis of random network calibrations, and
has provided convergence results in the context of Tweedie's compound Poisson GLM'’s.

Shown that stable portfolio results are achieved after 20 network training runs. Achieved at the
policy level by increasing the network fraining runs to 400 — important requirement for the use of
networks for insurance pricing and more general actuarial tasks.

CoV of the nagging predictoris a useful data-driven metric for measuring the relative difficulty
with which a network is able to fit to individual fraining examples — used to calibrate an accurate
meta network which approximates the nagging predictor.

Another important aspect of consistency within insurance is stable pricing over time. Future work could
consider methods for stabilizing network predictions as new information becomes available.
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Questions

Thank you
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